Discretizing Wachspress kernels is safe
نویسندگان
چکیده
Barycentric coordinates were introduced by Möbius in 1827 as an alternative to Cartesian coordinates. They describe points relative to the vertices of a simplex and are commonly used to express the linear interpolant of data given at these vertices. Generalized barycentric coordinates and kernels extend this idea from simplices to polyhedra and smooth domains. In this paper, we focus on Wachspress coordinates and Wachspress kernels with respect to strictly convex planar domains. Since Wachspress kernels can be evaluated analytically only in special cases, a common way to approximate them is to discretize the domain by an inscribed polygon and to use Wachspress coordinates, which have a simple closed form. We show that this discretization, which is known to converge quadratically, is safe in the sense that the Wachspress coordinates used in this process are well-defined not only over the inscribed polygon, but over the entire original domain.
منابع مشابه
Complex Transfinite Barycentric Mappings with Similarity Kernels
Transfinite barycentric kernels are the continuous version of traditional barycentric coordinates and are used to define interpolants of values given on a smooth planar contour. When the data is two-dimensional, i.e. the boundary of a planar map, these kernels may be conveniently expressed using complex number algebra, simplifying much of the notation and results. In this paper we develop some ...
متن کاملConvergence of Wachspress coordinates: from polygons to curved domains
Abstract: Given a smooth, strictly convex planar domain, we investigate point-wise convergence of the sequence of Wachspress coordinates defined over finer and finer inscribed polygonal approximations of the domain. Based on a relation between the discrete Wachspress case and the limit smooth case given by the Wachspress kernel defined by Warren et al., we show that the corresponding sequences ...
متن کاملLaplacian spectral distances and kernels on 3D shapes
This paper presents an alternative means of deriving and discretizing spectral distances and kernels on a 3D shape by filtering its Laplacian spectrum. Through the selection of a filter map, we design new spectral kernels and distances, whose smoothness and encoding of both local and global properties depend on the convergence of the filtered Laplacian eigenvalues to zero. Approximating the dis...
متن کاملOn the injectivity of Wachspress and mean value mappings between convex polygons
Wachspress and mean value coordinates are two generalizations of triangular barycentric coordinates to convex polygons and have recently been used to construct mappings between polygons, with application to curve deformation and image warping. We show that Wachspress mappings between convex polygons are always injective but that mean value mappings can fail to be so in extreme cases.
متن کاملOn Wachspress pentagonal patches
Wachspress quadrilateral patches have been recently studied from the point of view of applications to surface modelling in CAGD [1], [3], [4]. Some more applications for defining barycentric coordinates for arbitrary polygons have also been presented in [5] [9]. The purpose of the present paper is to introduce non-negative Wachspress rational basis functions for surface modelling on pentagonal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Aided Geometric Design
دوره 52 شماره
صفحات -
تاریخ انتشار 2017